M. Sc. (Electronics, Computer & Instrumentation) (Sem. II) (CBCS) Examination

April / May - 2017

Basic Circuit Analysis: Paper - 6

Faculty Code : 003 Subject Code : 027202

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

- 1 Answer the following : (Any **Seven**)
 - (1) Define Voltage and Current.
 - (2) What are the bilateral and unilateral elements? Give examples.
 - (3) Prove that for inductor $i(t) = \frac{1}{L} \int_0^t v dt + i(0)$.
 - (4) Find the voltage between A and B for the following circuit.

- (5) Define tree, co-tree, twig and link.
- (6) Write the condition for any network to become "supermesh" and "supernode".
- (7) State Thevenin and Norton theorems.
- (8) Prove the $v_{av} = 0.637v_p$ for sine wave.
- (9) Draw the waveform from the following phasor diagram,

NCD-003-027202J

[Contd...

14

- (10) Determine the average power, P_{av} , delivered to the circuit consisting of an impedance Z = 5 + j8 when current flowing through the circuit is $I = 5 \angle 30^{\circ}$.
- 2 Answer any two from the following:
 - (1) Write the Kirchhoff's current law. Explain current division rule.
 - (2) Draw all possible trees for the following graph: 7

(3) Determine the voltage at each node for the circuit shown below:

- 3 Answer the following:
 - (1) Determine mesh currents I_1 , I_2 and I_3 in the following circuit.

NCD-003-027202]

[Contd...

(2) Draw star and delta network. Prove that

$$R_A = \frac{R_1 R_2}{R_1 + R_2 + R_3}, R_B = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$
 and $R_c = \frac{R_2 R_3}{R_1 + R_2 + R_3}$

Where R_A , R_B and R_C are resistances of star network and R_1 , R_2 and R_3 are resistances of delta network.

OR

- **3** Answer the following:
 - (1) Explain superposition theorem with one example.
 - (2) Explain duals and duality with one example. 7
- 4 Answer any two from the following:
 - (1) Explain following for sine wave 7
 - (A) Phase of sine wave
 - (B) RMS value
 - (C) Peak value
 - (D) Form factor
 - (2) Discuss series RLC circuit in terms of its phase relation of V_R , V_L and V_C and Impedance.
 - (3) Explain the following with necessary mathematical 7 steps.
 - (A) Average power
 - (B) Apparent power.
- 5 Answer any two from the following:
 - (1) For the circuit shown below, determine the current in (2+j3) ohm by using the superposition theorem.

7

(2) For the circuit shown below find X_L, Z_T, I_T and θ .

(3) Verify the reciprocity theorem for the following circuit. 7

(4) For following circuit find the power delivered by 4V source using mesh analysis and voltage across the 2 ohm resistor.
